

Differential Calculus

Suppose $f$ is a real function and $c$ is a point in its domain.
The derivative of $\overline{f \text { at } c}$ is defined by

provided this limit exists. Derivative of f at c is denoted by
$f^{\prime}(\bar{c})$ or $\overline{d x}(f(x))$ at $x=c$.
$F^{\prime}(c), \frac{d}{d x}(f(x))$ at $x=c$
The function defined by

$$
\begin{array}{ll}
f^{\prime}(x) \Rightarrow \lim _{x \rightarrow 0} \frac{f(x+h)-f(x)}{h} & y=f(n) \\
y^{\prime}=f^{\prime}(n)
\end{array}
$$

wherever the limit exists is defined to be the derivative of $\frac{\partial n}{d n}$
$f$. The derivative of f is denoted by $f^{\prime}(x)$ or $\frac{}{d x}(f(x))$ or if $y=f(x)$ then $y^{\prime}$ or $\overline{d x}$.


The following rules were established as a part of algebra of derivatives:
(1) $(\underline{u} \pm \underline{v})^{\prime}=\underline{u}^{\prime} \pm \underline{v^{\prime}}$

$$
f(x)=x^{2}
$$

(2) $(u v)^{\prime}=u^{\prime} v+u v^{\prime}$ (Leibnitz or product rule)

Lt $\operatorname{Lt}_{n \rightarrow 0} \frac{f(n+n)-f(n)}{n}$
(3) $\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-v^{\prime} u}{v^{2}}$ (Quotient rule).
$\frac{d}{d x}\left(x^{2}\right)=2 x \left\lvert\, \frac{d}{d x}(x)=3 x^{2}-\right.$


The following table gives a list of derivatives of $2 t h+2 x$
certain standard functions:


Derivatives of composite functions

$$
\begin{aligned}
& f_{0}(n)=f(g(m) \\
& g \circ f(n)=\operatorname{g}^{\prime} f(n)
\end{aligned}
$$

Chain Rule: If $f=v(\underline{u}(x))$ then $\frac{d f}{d x}=\frac{d v}{d u(x)} * \frac{d u(x)}{d x}$

Chain Rule: If $f=v(u(x))$ then $\frac{d f}{d x}=\frac{d v}{d u(x)} * \frac{d u(x)}{d x}$
or if we write $t=u(x)$ then $\frac{d f}{d x}=\frac{d v}{d t} * \frac{d t}{d x}$
or
If $f=w(\overline{u(v(x)))})$ then $\frac{d f}{d x}=\frac{d w}{d s} * \frac{d s}{d t} * \frac{d t}{d x}$ where $t=v(x)$ and $s=u(t)$.

Ex. Find the derivative of $(2 x+1)^{3}$

$$
\begin{aligned}
& \text { erivative of }(2 x+1)^{3} \\
& f(x)=2 x+\quad g(x)=x^{3} \quad \left\lvert\, \begin{array}{l}
y \\
\text { f(2x+1) })^{3} \\
\text { derivative of } \sin \left(x^{3}\right)
\end{array} \quad \begin{aligned}
& y=3(2 x+1)^{2}-2 \\
&=6(2 x+1)^{2}
\end{aligned}\right.
\end{aligned}
$$

Ex. Find the derivative of $\sin \left(x^{3}\right)$


$$
s
$$

$$
=\left(\sin \left(l_{j}(x)\right)\right)^{3 / 4}
$$

$$
\frac{3}{4}\left(\underline{\underline{\sin (\log x})^{-1}}\right)^{-14} \cdot \cos \left(\lg ^{x}\right) \cdot \frac{1}{1}
$$

$$
\frac{3}{4}+
$$

$\cos 1$

$$
\cos (\tan \sqrt{x}) \sec \sqrt{x} \cdot \frac{1}{2 \sqrt{x}} \quad \cos (\tan \sqrt{x}) \frac{1}{25} \sqrt{2} \sec ^{2} \sqrt{x}
$$

$$
\frac{d y}{d x}=\frac{1}{2 \sqrt{a^{2}+\sqrt{a^{2}+x^{2}}}} \cdot\left(0+\frac{1 \quad x x}{\not x \sqrt{a^{2}+x^{2}}}\right)
$$

$$
\begin{aligned}
& =\frac{1}{2} y \frac{x}{\sqrt{2^{2 \times m}}} \\
& \frac{d}{d x}(f(g(N))) \\
& =f^{\prime}\left(g(n) \cdot \delta^{\prime}(n)\right.
\end{aligned}
$$

If $f(x)=-f(x)$, where $f(x)$ is double differentiable function and $\underline{g(x)=f^{\prime}(x) \text {. If } F^{\prime}(x)=\left(f\left(\frac{x}{2}\right)\right)^{2}+\left(g\left(\frac{x}{2}\right)\right)^{2} \text { and } \mathrm{F}(5)=5 \text {, then } \mathrm{F}(10) \text { is }}$
A 0
B 5
C 10
D 25

$$
\begin{aligned}
& F^{\prime}(x)=2 \cdot f\left(\frac{x}{2}\right) \cdot f^{\prime}\left(\frac{x}{2}\right) \cdot \frac{1}{2} \\
& F(x)=\left(f\left(\frac{x}{2}\right)\right)^{2}+\left(g\left(\frac{x}{2}\right)\right)^{2}
\end{aligned}
$$


$F^{\prime}(x)=2 \cdot f\left(\frac{x}{2}\right) \cdot f^{\prime}\left(\frac{x}{2}\right) \cdot \frac{1}{2}+2 g\left(\frac{x}{2}\right) \cdot g^{\prime}\left(\frac{x}{2}\right) \cdot \frac{1}{z}$
a. $\int 3 x^{\frac{y}{x}} d \cos \left(x^{( } x^{\frac{1}{2}} \frac{\pi}{2}\right) \quad f\left(\frac{y}{2}\right)$
b. $3 x^{2} \cos \left(x^{3}\right)$
c. $4 x^{2} \cos \left(x^{3}\right)$
d. $3 x^{2} \sin \left(x^{3}\right)$

Ex. Find the derivative of $\sin ^{3 / 4}(\log (x))$
Ex. Find the derivative of $\sin (\tan \sqrt{x})$

When a relationship between $x$ and $y$ is expressed in a way that it is easy to solve for $y$ and write $y=f(x)$, we say that $y$ is given as an explicit function of $x$.
D. $\frac{}{3 y} * \frac{y}{\sqrt{a^{2}+x^{2}}}$

1
Wee say $y=\begin{gathered}x \\ \sqrt{a^{2}+x^{2}}\end{gathered}$
$\checkmark \sqrt{a^{2}+x^{2}} x+\sin x y+y=0$
is implieifif because its difficult to write $y$ as a function of $x$.

1. $2 x+3 y=\sin x$
2. $2 x+3 y=\sin y \quad 3 . a x+b y^{2}=\cos y$
3. $x y+y^{2}=\tan x+y \quad 5, x^{2}+x y+y^{2}=100 \quad 6, x^{3}+x^{2} y+x y^{2}+y^{3}=81$

## Derivatives of inverse trigonometric functions

## Ex. Find the derivatives of $y=\sin ^{-1} x$

Ex. Find the derivatives of $y=\tan ^{-1} x$

| $f(x)$ | $\cos ^{-1} x$ | $\cot ^{-1} x$ | $\sec ^{-1} x$ | $\operatorname{cosec}^{-1} x$ |
| :---: | :---: | :---: | :---: | :---: |
| $f^{\prime}(x)$ | $\frac{-1}{\sqrt{1-x^{2}}}$ | $\frac{-1}{1+x^{2}}$ | $\frac{1}{x \sqrt{x^{2}-1}}$ | $\frac{-1}{x \sqrt{x^{2}-1}}$ |

10. $y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$
11. $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$
12. $y=\sin ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$
13. $y=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right),-1<x<1$

Q2. If $y=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$, then $\left(1-\mathrm{x}^{2}\right) \frac{d y}{d x}$ is equal to

(B) $1+x y$
(C) $1-x y$

D $x y-2$

Q6. If $\sin ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)=\log a$, then $\frac{d y}{d x}$ is equal to
A $\frac{x}{y}$
(B) $\frac{y}{x^{2}}$

C $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$
(D) $\frac{y}{x}$

Q9. If $f(x)=2 \sin ^{-1} \sqrt{1-x}+\sin ^{-1}(2 \sqrt{x(1-x)})$, where $x \in\left(0, \frac{1}{2}\right)$, then $f^{\prime}(x)$ is


Q2. If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $f(f(f(x)))+\left(f(x)^{2}\right)$ at $(x=1$ is:
$\begin{array}{lll}f(x))^{c} & & \\ & \text { B } & 15 \\ & C & 9\end{array}$

D 12

$$
f^{\prime}(f(1)) \begin{array}{r}
27 t \\
f^{\prime}(1)=3
\end{array}
$$

$$
\begin{aligned}
& 3-3.3 \times 2.3 \\
& 27+6=33
\end{aligned}
$$

Q7. If $\mathrm{y}=\sec \left(\tan ^{-1} \mathrm{x}\right)$, then $\frac{d y}{d x}$ at $\mathrm{x}=1$ is equal to


1. $\frac{\imath}{\sin x}$
2. $e^{\operatorname{sn} \cdot x}$
3. $e^{x-}$
4. $\sin \left(\tan ^{-1} e^{-x}\right)$
5. $\log \left(\cos e^{x}\right)$
6. $\left(e^{x}+e^{x^{2}}+\ldots+e^{\prime}\right)^{\prime}=e^{x}+e^{x^{2}} \cdot 2 x+e^{x^{3}} \cdot 3 x^{2}$
7. $\sqrt{e^{\sqrt{x}}}, x>0$
8. $\log (\log x), x>1$
9. $\frac{\cos x}{\log x}, x>0$
10. $\cos \left(\log x+e^{x}\right), x>0$

$$
\text { 10. } \cos \left(\log x+e^{\prime}\right), x>0
$$

$y=$
Logarithmic Differentiation

$$
\frac{d y}{d x}=y\left[\frac{v(x)}{u(x)} \cdot u^{\prime}(x)+v^{\prime}(x) \cdot \log [u(x)]\right]
$$

$$
\begin{aligned}
& \text { Ex. } \\
& \text { Differentiate } \sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}} \text { w.r.t. } x . \\
& =\sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}}=\left(\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}\right)^{1 / 2} \\
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left(\log (x-3)+\log \left(x^{2}+4\right)-\log \left(3 x^{2}+4 x+5\right)\right) \\
& \frac{d y}{d x}=\frac{y}{2}\left(\frac{1}{x-3}+\frac{1}{x^{2}+4} \cdot 2 x-\frac{1}{3 x^{2}+4 x+5} \cdot(6 x+4)\right)
\end{aligned}
$$

Ex.
Differentiate $a^{x}$ w.r.t. $x$, where $a$ is a positive constant.

$$
\begin{array}{ll}
y=\kappa^{n} & 2^{x} \\
\log y=x \log 2 & 2^{x} \cdot \lg z
\end{array}
$$

$$
\begin{aligned}
& y=f(x)=[u(x)]^{v(x)} \text { (1) } \log _{g}(a, b)=\log _{a}+\log _{0} b \\
& \text { (2) } \log \left(\frac{a}{b}\right)=\log a-\lg b \\
& \log y=v(x) \log [u(x)] \\
& \text { (3) } \log \binom{b}{a}=b \log a \\
& \text { (7) } \log ^{f}\left(e^{f(n)}\right)=f(n) \\
& \frac{1}{y} \cdot \frac{d y}{d x}=v(x) \cdot \frac{1}{u(x)} \cdot u^{\prime}(x)+v^{\prime}(x) \cdot \log [u(x)] \\
& \text { (5) } e^{\log (f(x))}=f(x)
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \cos \left(\tan ^{-1}\left(e^{-1}\right)\right) \cdot \frac{1}{1+e^{-2 x}} \cdot\left(-e^{-2}\right) \\
& y=\frac{e^{x}+e^{x^{2}}+e^{x^{3}}+e^{x^{n}}+e^{x^{5}}}{x^{-2}}+\cdots e^{e^{n}}=e^{e^{2 n}} \\
& \begin{aligned}
1+r+r^{2}+r^{3}+-e^{x^{2}} & =\left(e^{x}\right)^{2} \quad \frac{e^{x^{2}}}{e^{x}}=e^{x^{2}-x} \\
& =e^{x}-e^{x}=
\end{aligned}
\end{aligned}
$$



Ex.
Differentiate $x^{s i n} x, x>0$ w.r.t. $x$.

$$
\begin{aligned}
y & =x^{\sin x} \\
\log y & =\sin x \cdot \log x \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\sin \cdot \frac{1}{x}+\lg x \cdot \cos x \\
d y & \sin x / \sin x+\operatorname{lan} x
\end{aligned}
$$

$x y^{y}$ Find $\frac{d y}{d x}$, if $\left(y^{x}+x^{y}+x^{x}\right)^{\prime}=\left(d^{b} .\right)^{\prime}$

$$
\begin{gathered}
\left(y^{n}\right)^{\prime}+\left(x^{y}\right)^{\prime}+\left(\frac{\left.x^{y}\right)^{\prime}}{D_{3}^{\prime}}=0\right. \\
D_{2}^{\prime}= \\
\log _{1}=D_{1}=x \log \left|\frac{1}{D_{1}} \cdot \frac{d D_{1}}{d x}=x \cdot \frac{1}{D} \cdot \frac{d y}{d x}+\log _{y}\right| D_{1}^{\prime}=D_{1}\left(\frac{x}{y}\left[\frac{D_{y}}{d y}+l_{y y}\right)\right.
\end{gathered}
$$

Q10. If $x^{m} y^{n}=(x+y)^{m+n}, \frac{d y}{d x}$
then is

A $\frac{x}{y}$

$$
\begin{aligned}
& m \log x+n \log y=(m+n) \lg (x+y) \\
& \frac{m}{x}+\frac{n}{y} \frac{d y}{d x}=(m+3) \frac{1}{x+y} \cdot\left(1+\frac{d y}{d x}\right) \\
& \text { C } \frac{x+y}{x y} \quad\left(\frac{n}{y}-\frac{m+x}{x+y}\right) d y=\frac{m+n}{x+y}-\frac{m}{x} \\
& \left(n x+\frac{2 y-m y-x y}{y(n+y)} \frac{d y}{d x}=\frac{x m^{x}+x n-n x-m y}{x(x+y)}\right. \\
& \left(\frac{n n-m^{\prime}}{y}\right) y^{\prime}=\frac{n n-\sin y}{x} \\
& y^{\prime}=\frac{y}{x}
\end{aligned}
$$



Q5. The function $f(x)=e^{x}+x$, being differentiable and one to one, has a differentiable inverse $f^{\prime}(x)$. The value of $\frac{d}{d x}\left(f^{-1}\right)$ at the point $f(\log 2)$ is

$$
f^{\prime}(x)=e^{x}+1
$$



$$
\begin{aligned}
& \left.\frac{d}{d x}\left(f^{-1}(x)\right) \quad x=f\left(\lg z^{2}\right)\right] \\
& f\left(f^{-1}(x)\right)=x \\
& D_{1}(f \omega \cdot r+x \\
& f^{\prime}\left(f^{-1}(n)\right)\left(f^{-1}(n)\right)^{\prime}=1
\end{aligned}
$$

$$
\Rightarrow f^{\prime}(g(x)) g^{\prime}(x)=1
$$

$$
\Rightarrow\left(e^{g(f(\log 2))}+1\right) g^{\prime}(f(\log 2))=1
$$

$$
\Rightarrow\left(e^{\log 2}+1\right) g^{\prime}(f(\log 2))=1
$$

$$
\Rightarrow g^{\prime}(f(\log 2))=\frac{1}{3}^{l}
$$

Derivatives of Functions in Parametric Forms

$\frac{d y}{d x}=$
$\frac{d y / d x}{d x / 8 x}=$
$\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}$
$\underline{d y}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d x}{d x / d x}=\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t} \\
& \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\left(\text { whenever } \frac{d x}{d t} \neq 0\right) \\
& \frac{d y}{d x}=\frac{d y / d t}{d x / d x}=\frac{h / a x^{3}}{\text { lat }}=\frac{t^{2}}{d y}=\frac{\frac{d x}{d t}}{\frac{d y}{d x}}= \\
& x=2 a x^{2} \\
& \text { 1. } x=2 a t^{2}, y=a t^{4} \\
& \text { 2. } x=a \cos \theta, y=b \cos \theta \\
& y=a x \\
& \text { 3. } x=\sin t, y=\cos 2 t \\
& \text { 4. } x=4 t, y=\frac{4}{t} \\
& \text { 5. } x=\cos \theta-\cos 2 \theta, y=\sin \theta-\sin 2 \theta \quad t \\
& \text { 6. } x=a(\theta-\sin \theta), y=a(1+\cos \theta) \quad \text { 7. } x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}, y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}} \\
& \text { 8. } x=a\left(\cos t+\log \tan \frac{t}{2}\right) y=a \sin t \quad \text { 9. } x=a \sec \theta, y=b \tan \theta \\
& \text { 10. } x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta) \\
& \text { 11. If } x=\sqrt{a^{\sin ^{-1 t}}}, y=\sqrt{a^{\alpha^{-1 / t}}} \text {, show that } \frac{d y}{d x}=-\frac{y}{x}
\end{aligned}
$$



Find the second order derivatives of the functions given in Exercises 1 to 10 .

$$
y=x^{2-}
$$

$y^{\prime}=\angle u 0$.

$$
=\angle 40 . \quad y^{u}=20.19 x^{10}=380 x x^{2}
$$

$$
\begin{aligned}
& y=x^{2}+3 x+2 \\
& y^{\prime}=2 x+3 \\
& y^{\prime \prime}=2
\end{aligned}
$$

Find the second order derivatives of the functions given in Exercises 1 to 10 .

1. $x^{2}+3 x+2$
2. $\log x$
3. $e^{6 \mathrm{fr}} \cos 3 x$
4. $\sin (\log x)$
5. If $y=5 \cos x-3 \sin x$, prove that $\frac{d^{2} y}{d x^{2}}+y=0$
$\frac{2 \cdot x^{20}}{5 \cdot x^{3} \log x}$
$8 \cdot \tan ^{-1} x$
6. $x \cdot \cos x$

$$
y=x \cdot \cos x
$$

$y^{\prime}=x \cdot(\sin x)+\cos x 1$
9. $\log (\log x)$
$y^{\prime \prime}=-x \cos x-\sin x \sin x$

$$
\begin{aligned}
& y^{\prime}=-5 \sin x-3 \cos x \\
& y^{\prime}=-5 \cos x+3 \sin x
\end{aligned}
$$

Q3. $\mathrm{x}=\mathrm{t} \cos \mathrm{t}, \mathrm{y}=\mathrm{t}+\sin \mathrm{t}$, then $\frac{d^{2} x}{d y^{2}}$ at $t=\frac{\pi}{2}$ is

$$
\frac{d x}{d y^{2}}=
$$

$$
x=t \cos t
$$

$$
\frac{d x}{d t}=t(-\sin t)+\cos t
$$

$$
y=t+\sin x
$$

$$
\begin{aligned}
& \frac{\partial y}{d x}=\frac{1+\operatorname{cost}}{\frac{d x}{d y}}=\frac{1}{\frac{1+C x}{r}}
\end{aligned}
$$

$\frac{d}{d y}\left(\frac{d x}{d y}\right)=\frac{d\left(\frac{d y}{d y}\right)}{\frac{d y}{d y}}=\frac{d}{d x}\left(\frac{d m}{d y}\right) \frac{d x}{d y}$

If $x=3 \operatorname{tantand} y=3$ sec $t$, then the value of $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{4}$, is:

$$
\begin{aligned}
& x=3 \tan \\
& \frac{d x}{d x^{2}}=3 \sec ^{2} x \\
& \text { A } \frac{3}{2 \sqrt{2}} \\
& x=3 \tan t \\
& y=3 \sec t \\
& \frac{d x}{\partial v}=3_{3} \frac{1}{3 \sqrt{2}} \\
& \text { C } \frac{1}{6} \\
& \text { D } \frac{1}{6 \sqrt{2}} \\
& \frac{d n}{d x}=3 \cdot \sec ^{2 x} \\
& \frac{d y}{d n}=\frac{\tan t \cdot \cos t}{\sin t} \\
& =\frac{\sin x}{\cos } \cdot \cos x=\sin x \\
& \begin{array}{l}
\frac{d y}{\partial x}=\sin x \\
\frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}\right)=\frac{d}{\partial x}\left(\frac{\partial y}{\partial x}\right)
\end{array} \\
& \begin{aligned}
& \frac{d y}{\partial x}=\sin t \\
= & \frac{\partial}{\partial x}\left(\frac{\partial y}{\partial x}\right)=\frac{d}{\partial x}\left(\frac{\partial y}{\partial x}\right) \frac{d t}{\partial x}
\end{aligned} \\
& 2 y^{2 y} \times> \\
& \frac{d\left(\frac{d y}{d x}\right)=\frac{x}{d x \cdot d} \frac{d^{2 y} \cdot d x}{d x d y}}{\frac{d^{2} y}{d u^{2}} \times} \\
& {\left[=\frac{\left.\operatorname{Css}+\frac{1}{3 \sec ^{2}}+\frac{1}{3} \cos 3+=\frac{1}{3}\left(\cos _{3} \frac{\pi}{4}\right)^{3}\right) .}{}\right.} \\
& =\frac{1}{3}\left(\frac{1}{52}\right)^{3} \\
& =\frac{1}{3} \frac{1}{2 \sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d i}\left(\frac{d y}{d y}\right) \frac{d}{d x}\left(\frac{d y}{d y}\right) \frac{d t}{d y} \\
& \frac{\partial y}{d x}=\frac{(1+\cos t)(-t \cos x-\sin t-\sin t)-(-t \sin t+\cos )(-\sin x)}{(1+\cos t)^{2}}=\frac{1}{1+\operatorname{tas} t} \\
& \begin{array}{c}
\cos \frac{\pi}{2}= \\
\sin \frac{2}{2}
\end{array}=(1)(0-1-1)-\left(-\frac{\pi}{2}+0\right)(-1)<-2-\frac{\pi}{2}=\frac{-4-4}{(1+0)^{3}} \\
& =-\left(\frac{4+\pi}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { r } \partial u^{2} \\
& =\frac{1}{3}\left(\frac{1}{5}\right) \\
& =\frac{1}{3} \frac{1}{2 \sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d u}{d t}= \\
& \text { (B) } 32 \quad \frac{d u}{d s}=2 x \frac{d x}{d \lambda}+2 y \frac{d y}{d y} \\
& \text { (C) } 36 \\
& \frac{d^{2} u}{d s^{2}}=2\left(\frac{d y}{d x}\right)^{2}+2 x \frac{d^{2} x}{d s^{2}}+2\left(\frac{\partial y}{d x^{2}}\right)^{2}+2 y \frac{\partial^{2} y}{d s^{2}} \\
& \text { (D) } 10 \\
& \frac{d u}{d s}=\frac{2 x}{=} \frac{d x}{d s}+2 y \cdot \frac{d y}{d s} \quad \frac{d z}{d s^{2}}=2(1)^{2}+2 x(0)+2(2)^{2}+2 y \cdot(0) \\
& \frac{d^{2} u}{d x^{2}}=2 x \cdot \frac{d^{2} x}{d x}+2\left(\frac{d x}{d s}\right)^{2}+2 y \cdot d^{2} y+2\left(\frac{d y}{d x}\right)^{2}+8=10 \\
& \begin{aligned}
\frac{d x}{d s^{2}} & =\frac{2 x \cdot \frac{d x}{d d_{2}}+2\left(\frac{d x}{d s}\right)^{2}}{=}+2 y \cdot \frac{d^{2} y}{d s^{2}}+2\left(\frac{d y}{d s}\right)^{2} \\
& =2 x \cdot \frac{d^{2} x}{d s^{2}}+2\left(\frac{d x}{d s}\right)^{2} \quad \frac{d}{d t}\left(\frac{d y}{d x}\right)=\sin k
\end{aligned} \\
& \text { d } \frac{d}{d x^{2}}(y)
\end{aligned}
$$

Integration is the inverse process of differentiation. Instead of differentiating a function, we are given the derivative of a function and asked to find its primitive, i.e., the original function. Such a process is called integration or anti differentiation.

$$
f(x)=x^{2}
$$

$$
x^{2}+1
$$

$$
f^{\prime}(x)=2 x \quad 2 x \quad 2 x
$$

Derivatives
(i) $\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=x^{n}$;
Particularly, we note that

$$
\frac{d}{d x}(x)=1
$$

(ii) $\frac{d}{d x}(\sin x)=\cos x$;
(iii) $\frac{d}{d x}(-\cos x)=\sin x$;
(iv) $\frac{d}{d x}(\tan x)=\sec ^{2} x$;
(v) $\frac{d}{d x}(-\cot x)=\operatorname{cosec}^{2} x$;
(vi) $\frac{d}{d x}(\sec x)=\sec x \tan x$;

Sinus 2
(vii) $\frac{d}{d x}(-\operatorname{cosec} x)=\operatorname{cosec} x \cot x$;

Integrals (Anti derivatives)
$\int x^{n} d x=\underline{\frac{x^{n+1}}{n+1}+\mathrm{C}, n \neq-1}$
$\int d x=x+C$
$\int \cos x d x=\sin x+C$
$\int \sin x d x=-\cos x+C$
$\int \sec ^{2} x d x=\tan x+C$
$\int \operatorname{cosec}^{2} x d x=-\cot x+C$
$\int \sec x \tan x d x=\sec x+C$
$\int \underline{\operatorname{cosec} x \cot x d x}=-\underline{\operatorname{cosec} x+C}$

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+\mathrm{C}
$$

$$
\int \frac{d x}{\sqrt{1-x^{2}}}=-\cos ^{-1} x+c \quad \frac{d}{d u}(5)=0
$$

$$
\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+\mathrm{C}
$$

$$
\int \frac{d x}{1+x^{2}}=-\cot ^{-1} x+\mathrm{C}
$$

$\int \frac{d x}{x \sqrt{x^{2}-1}}=\sec ^{-1} x+C$
$\int \frac{d x}{x \sqrt{x^{2}-1}}=-\operatorname{cosec}^{-1} x+C$
$\int e^{x} d x=e^{x}+\mathrm{C}$
$\int \frac{1}{x} d x=\log |x|+C$
$\int a^{x} d x=\frac{a^{x}}{\log a}+\mathrm{C}$

Some properties of indefinite integral (a )The process of differentiation and integration are inverses of each other in the sense of the following results
$\frac{d}{d x} \int f(x) d x=f(x)$

$$
\int f^{\prime}(x) d x=f(x)+\mathrm{C} \text {, where } \mathrm{C} \text { is any arbitrary constant. }
$$

$$
\begin{aligned}
& \frac{d}{d x} \int f(x)=f(x) \\
& \int \frac{d}{d n} f(x)=f(x)+c
\end{aligned}
$$

(b )Two indefinite integrals with the same derivative lead to the same family of curves and so they are equivalent.

$$
(f(n))^{\prime}=g(n)
$$

$$
(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime}
$$

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

(d)

$$
\bar{P} f_{1}+f_{2} t \cdots+f_{n} d_{n}=\int f_{1} \partial_{n+} \int f_{2} d n t \ldots+f_{n} d_{n}
$$

For any real number $k, \int \underline{k} \underline{f(x)} d x=k \int f(x) d x$

$$
\int \sin n \cdot \lg a d n=\log a \int \sin n d n
$$

Ex.Find
(i) $\cos 2 x$
(ii) $3 x^{2}+4 x^{3}$
(iii) $\frac{1}{x}, x \neq 0$

Ex.Find


$$
\int \frac{x^{-1+1}}{1 H}-\left(1 \frac{1}{0}\right) \geq
$$

(i) $\int \frac{x^{3}-1}{x^{2}} d x$
(ii) $\int\left(x^{\frac{2}{3}}+1\right) d x$

$$
\begin{aligned}
\int\left(x-\frac{1}{x^{2}}\right) d x & =\int x-\int x^{-2} \\
& =\frac{x^{1+1}}{1+1}-\frac{x^{-2+1}}{-2 x}+c \\
& =\frac{1}{2} x^{2}+x^{-1}+c
\end{aligned}
$$

$$
=\frac{1}{2} x^{2}+x^{-1}+c
$$

Ex. Find

$$
\int \tan \sec x=\sec n
$$

(i) $\int(\sin x+\cos x) d x$
(ii) $\int \operatorname{cosec} x(\operatorname{cosec} x+\cot x) d x$

Ex. Find

$$
\frac{4 e^{3 Y}}{3}+x+C \text { 6. } \int\left(4 e^{3 x}+1\right) d x \quad \text { 7. } \int x^{2}\left(1-\frac{1}{x^{2}}\right) d x \quad \text { 8. } \int\left(a x^{2}+b x+c\right) d x \quad \frac{a x^{3}}{3}+b \frac{x^{2}}{2}+c x+c
$$

9. $\int\left(2 x^{2}+e^{x}\right) d x$
10. $\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x$
11. $\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x$
12. $\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x$
13. $\int \frac{x^{3}-x^{2}+x-1}{x-1} d x$ 14. $\int$

$$
\text { 15. } \int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x
$$

$$
\text { 17. } \int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x
$$

$$
\begin{aligned}
& \text { 11. } \int \frac{x^{2}}{x \text { 14. } \int(1-x) \sqrt{x} d x=\int \sqrt{x}-x^{3}} \begin{array}{l}
\text { 16. } \int\left(2 x-3 \cos x+e^{x}\right) d x \\
\text { 18. } \int \sec x(\sec x+\tan x) d x
\end{array}=\frac{\frac{1}{2}+1}{\frac{1}{2}+1} \frac{-\frac{2}{2}+1}{\frac{3}{2}+1}+C
\end{aligned}
$$

$\sec 0+\tan ^{2}==1$
-19. $\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x$
20. $\int \frac{2-3 \sin x}{\cos ^{2} x} d x$.

$$
=\tan x-x+c
$$

Integration by substitution
Ex. Find

$$
x^{2}+=+
$$

(i) $\sin m x$
(ii) $2 x \sin \left(x^{2}+1\right) \quad 2 x$ dn $-\cos \left(x^{2}+1\right) r$
(iii) $\frac{\tan ^{4} \sqrt{x} \sec ^{2} \sqrt{x}}{\sqrt{x}}$
(iv) $\frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}}=\frac{1}{1+x^{2}}=\frac{1}{\cos \left(\tan ^{-1} x\right)+c}$

$$
\begin{aligned}
& \int \operatorname{Sin} m x d x \\
& \frac{m d x=d t}{m x=t^{m}}=\frac{d t}{1} \\
& \int \sin t \cdot \frac{d t}{m} \\
& \frac{1}{m} \int \sin t d t=\frac{1}{m}(\cos t)+c \\
& =\frac{-1}{m} \cos (\sin )+c \\
& m_{\cdot 1}=\frac{d t}{d x} \quad \int 2 x \sin \left(x^{2}+1\right) d x \\
& \frac{\tan ^{4} \sqrt{x} \operatorname{Sec}^{2} \sqrt{x}}{\sqrt{x}} \quad \operatorname{Pattan} 5 x=t \\
& =2 \frac{\tan ^{5} 5 x}{5}+c \sqrt{\sqrt{x}}=t
\end{aligned}
$$

$$
\begin{aligned}
& =\tan x-\sec x+c
\end{aligned}
$$

Ex. Find

$$
\begin{aligned}
& \text { (i) } \int \sin ^{3} x \cos ^{2} x d x \quad \text { (ii) } \int \frac{\sin x}{\sin (x+a)} d x \text { (iii) } \int \frac{1}{1+\tan x} d x \\
& \int \sin ^{2} x \cdot \cos ^{2} x \cdot \sin x d x \\
& \int\left(1-\cos ^{2} x\right) \cdot \cos ^{2} x \cdot \operatorname{sinn} x d x=\int\left(1-t^{2}\right)\left(t^{2}\right) \cdot d t \\
& \cos x=t \\
& -\sin x d x=d t
\end{aligned} \quad \frac{1}{5} \cos ^{5} x-\frac{1}{3} \cos ^{3} x+C
$$

$$
u=\tan x=\frac{1}{2} \int \frac{\lfloor 2 \cos x}{\cos x+\sin x}
$$

$$
\int \frac{2 x d x}{x^{2}+1}=\int \frac{f^{\prime}(x)}{f(x)}=\log |f(x)|=\frac{1}{2} \int \frac{\cos x^{2}+\sin x+\cos x-\sin n}{\cos x+\sin x}
$$

$$
=\frac{1}{2} \int 1+\frac{\operatorname{Cos} n-\operatorname{Sin} n}{\operatorname{Cos} n+\operatorname{Sin} n}
$$

Ex. Find

$$
=\frac{1}{2}(x+\log (\cos x+\sin n))+c
$$

$$
\begin{aligned}
& 1+\log _{j}=A \\
& 0+\frac{1}{x} d u=d x \\
& \begin{aligned}
\int \frac{1}{x(1+\lg x)} d x & =\int \frac{1}{t} d t=\lg (t)+c \\
& =\lg (1+\lg x)+c
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \int \sin ^{2} x \cdot \cos ^{2} x \cdot \sin x d x \\
& \int\left(1-\cos ^{2} x\right) \cdot \cos ^{2} x \cdot \operatorname{Sin} n d x=-\int\left(1-t^{2}\right)\left(t^{2}\right) \cdot d t \\
& \cos n=t \\
& \frac{1}{5} \cos ^{5} x-\frac{1}{3} \cos ^{3} x+c \\
& \begin{array}{l}
x x-x \\
d x=-d x
\end{array} \int \frac{\sin x}{\sin (x+a)} d x=\int \frac{\sin (t-a)}{\sin x} d t \\
& =\int \frac{\sin (t) \cos a-\cos (t) \sin a}{\sin t} d t \\
& \left.\int \frac{f^{\prime}(x)}{f(x)}=\lg f(x)\right)=\int(\cos a-\sin a \cdot \cot t) d t \\
& \begin{aligned}
f \cos (t)(t)=\operatorname{ly}|\sin t| & =\cos a \cdot t-\sin a \cdot \operatorname{ly}|\sin t| t c \\
& =\cos a(x+a)-\sin a \operatorname{lin}|\cos (x+a)|
\end{aligned} \\
& =\cos a(x+a)-\sin a \log |\sin (x+a)|+c \\
& 1 H \tan x=t \quad \int \frac{1-2}{1+\tan x} d x=\int \frac{1}{1+\frac{\sin x}{\sin x}} d x=\int \frac{\cos x}{\cos x+\sin x} d x \\
& \text { Second } \\
& -\sin x d x=d t \\
& =\cos a \cdot t-\sin a \cdot \operatorname{ly}|\sin t|+c
\end{aligned}
$$

6. $\sqrt{a x+b}$
7. $x \sqrt{x+2}$
8. $x \sqrt{1+2 x^{2}}$
9. $(4 x+2) \sqrt{x^{2}+x+1}$
10. $\frac{1}{x-\sqrt{x}}$
11. $\frac{x}{\sqrt{x+4}}, x>0$
12. $\left(x^{3}-1\right)^{\frac{1}{3}} x^{5}$
13. $\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}$
14. $\frac{1}{x(\log x)^{m}}, x>0, m \neq 1$
15. $\frac{x}{9-4 x^{2}}$
16. $e^{2 x+3}$
17. $\frac{x}{e^{x^{2}}}$
18. $\frac{e^{\tan ^{-1} x}}{1+x^{2}}$
19. $\frac{e^{2 x}-1}{e^{2 x}+1}$
20. $\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}$
21. $\tan ^{2}(2 x-3)$
22. $\sec ^{2}(7-4 x)$
23. $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
& \cos ^{2} x=\frac{1+\cos 2 x}{2}, \quad \sin ^{2} x=\frac{1-\cos 2 x}{2} \quad \sin A \cdot C \\
& \sin 3 x=3 \sin x=4 \sin ^{3} x \Rightarrow \sin ^{3} x=\frac{\sin 3 x-3 \sin x}{-4}
\end{aligned}
$$

Integration using trigonometric identities
Find (i) $\int \cos ^{2} x d x$
(ii) $\int \sin 2 x \cos 3 x d x$
(iii) $\int \sin ^{3} x d x$
$\sin (-\theta)$

$$
\begin{aligned}
& \frac{1}{2} \int(1+\cos 2 x) d x=\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)+ \\
& \int \sin 2 x \cos 3 x=\int \frac{1}{2}\left(\sin (5 x)-\sin (x)=\frac{1}{2}\left(-\frac{\cos 5 x}{5}\right)+\frac{1}{2} \cos x+c\right. \\
& \left.\int \sin ^{3} x d x=\frac{-1}{4} \int(\sin ) x-3 \sin x\right) d x=\frac{-1}{4}\left[\frac{-\cos 3 x}{3}+3 \cos x\right]+1
\end{aligned}
$$

1. $\sin ^{2}(2 x+5)$
2. $\sin ^{3}(2 x+1)$
3. $\sin 4 x \sin 8 x$
4. $\sin ^{4} x$
5. $\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}$
6. $\tan ^{4} x$
7. $\frac{1}{\sin x \cos ^{3} x}$
8. $\sin 3 x \cos 4 x$
9. $\sin ^{3} x \cos ^{3} x$
10. $\frac{1-\cos x}{1+\cos x}$
11. $\cos ^{4} 2 x$
12. $\frac{\cos x-\sin x}{1+\sin 2 x}$
13. $\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}$
14. $\frac{\cos 2 x}{(\cos x+\sin x)^{2}}$
15. $\cos 2 x \cos 4 x \cos 6 x$
16. $\sin x \sin 2 x \sin 3 x$
17. $\frac{\cos x}{1+\cos x}$
18. $\frac{\sin ^{2} x}{1+\cos x}$
19. $\tan ^{3} 2 x \sec 2 x$
20. $\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}$
21. $\sin ^{-1}(\cos x)$

Integrals of Some Particular Functions
(1) $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$
(2) $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$
$a x^{2}+b x+c$
(3) $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+C$

$$
\begin{aligned}
& x^{2}+\frac{b}{a} x+\frac{c}{a} \\
& x^{2}+\frac{b}{a} x+\frac{c}{a}+\left(\frac{b}{2 a}\right)^{2}+\left(\frac{b}{2 a}\right)^{2}
\end{aligned}
$$

(4) $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$
(5) $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+C$
(6) $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$

Ex. Find
(i) $\int \frac{d x}{x^{2}-16}$
(ii) $\int \frac{d x}{\frac{\sqrt{2 x-x^{2}}}{x-4}} \int \frac{d x}{\sqrt{-\left(x^{2}-2 x\right)}}$

$$
=\int \frac{d x}{\sqrt{-\left(x^{2}-2 x+1-1\right)}}
$$

$$
=\int \frac{d x}{\sqrt{1-(x-1)^{2}}}
$$



$$
\begin{aligned}
& 11 x+=A(x+2)+B(x+1)=A x+2 A+B x+B=(A+B) x+(A+B) \\
& \operatorname{cof} x^{\prime} \quad 1=A+i f-(1) \\
& \begin{array}{lll}
\text { c.fffu } 0=2 A+B & -2 & -A=1
\end{array} \quad-1+B=1 \\
& \int \frac{x}{(x+1)(x+2)}=\int \frac{-1}{x+1}+\frac{2}{x+2} \\
& =-1 \lg (x+1)+2 \lg (x+2)+c \\
& \sqrt{\frac{x}{(x+2)}}=\int \frac{-1}{(x+1)(-1+2)}+\frac{-2}{(-2+1)(x+2)} \\
& =\int \frac{-1}{x+1}+\frac{2^{(-2+1)(x+2)}}{x+2} \\
& \begin{array}{l}
x=\frac{3}{x}-3
\end{array} \int \frac{d x}{x^{2}-9}=\int \frac{-\log (x x)+2 \ln (x+2)+c}{\frac{d x}{(x-3)(x+3)}}=\int_{6(x-1)} \frac{d x}{d x} \int_{-6(x+3)}^{d x} \\
& \int \frac{\sqrt{3 x-1}}{\substack{(x-1)(x-2)(x-3)}} \frac{=\frac{1}{6} \ln (x-3)-\frac{1}{2} \lg (x+3)}{2} \frac{\sqrt{5}}{(x-1) 2}+c \\
& =\lg (x-1)-5 \lg (x-2)+4 \ln (x-7)+c \\
& \begin{array}{ll}
\frac{\frac{1}{x}}{\frac{(x-1)(x-2)(x-3)}{2 x}} 5 \cdot \frac{\frac{2 x}{x^{2}+3 x+2}}{} \text { 6. } \frac{\overline{1-x^{2}}}{x(1-2 x)}
\end{array} \\
& \sqrt{2 x} \\
& (x+1)(x+2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 7. } \frac{x}{\left(x^{2}+1\right)(x-1)} \\
& \begin{array}{lll}
\text { 10. } \frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)} & \text { 11. } \frac{x}{(x-1)^{2}(x+2)} & \text { 9. } \frac{3 x}{(x+1)\left(x^{2}-4\right)} \\
x^{3}-x^{2}-x+1 \\
(1-x)\left(1+x^{2}\right) & \text { 12. } \frac{x^{3}+x+1}{x^{2}-1} \\
\int \frac{2}{\left(1-\operatorname{dx}\left(1+x^{2}\right)\right.} & \text { 14. } \frac{3 x-1}{(x+2)^{2}} & \text { 15. } \frac{1}{x^{4}-1}
\end{array}
\end{aligned}
$$

$x^{2} x=$

$$
\begin{aligned}
& \frac{2}{(1-x)\left(x^{2}+1\right)}=\frac{A}{(1-x)}+B x+c \quad x^{2} \underline{x}=\underline{E} i \\
& 2=\underline{A\left(x^{2}+1\right)}+(B x+2)\left(\underline{x^{2}+}\right)=A\left(x^{2}+1\right)+\left(\underline{B} x-B x^{2}+C-(x)\right.
\end{aligned}
$$


$\frac{1}{2} x^{2}$ Sant $\frac{1}{\text { Integration by Parts }}$

$$
\begin{aligned}
& x_{2} \text { ust } \\
& \int^{u v}=u v_{1}-u^{\prime} v_{2}+u^{\prime \prime} v_{3}-u^{\prime \prime \prime} v_{4}+u^{\prime v} v_{5} \ldots \ldots \\
& \int_{x \operatorname{Sin}}=x \cdot(-\cos x)-1 \cdot(-\sin x)
\end{aligned}
$$

\#

$$
\begin{aligned}
& \int x \cdot \sin =x \cdot(-\cos x)-1 \cdot(-\sin x) \\
& \int x^{3} \cdot \sin x=x^{3}(-\cos x)-3 x^{2}(-\sin x)+6 x(\cos x)-6(\sin x) \\
& \int x^{4} \cdot e^{x}=x^{4} e^{x}-4 x^{3} e^{x}+12 x^{2} e^{x}-24 n e^{x}+24 e^{x} \\
& \int x^{4} \cdot e^{x}=x^{4} \cdot e^{x}-\int 4 x^{3} \cdot e^{x}
\end{aligned}
$$

5. $x \log 2 x$
6. $x^{2} \log x$
7. $x \sin ^{-1} x$
8. $x \tan ^{-1} x$
9. $x \cos ^{-1} x$
10. $\left(\sin ^{-1} x\right)^{2}$
11. $\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}$
12. $x \sec ^{2} x$
13. $\tan ^{-1} x$
14. $x(\log x)^{2}$
15. $\left(x^{2}+1\right) \log x$
$\checkmark$ Some other formulas

$$
\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}
$$

(ii) $\int \sqrt{x^{2}+a^{2}} d x=\frac{1}{2} x \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+\mathrm{C}$


2. $\sqrt{1-4 x^{2}}$
3. $\sqrt{x^{2}+4 x+6}$
5. $\sqrt{1-4 x-x^{2}}$
6. $\sqrt{x^{2}+4 x-5}$
7. $\sqrt{1+3 x-x^{2}}$
8. $\sqrt{x^{2}+3 x}$
9. $\sqrt{1+\frac{x^{2}}{9}}$

Q1. $\int \sec ^{\frac{4}{\theta}} \theta \operatorname{cosec} \frac{14}{\frac{14}{\theta}} \theta d \theta$ is dqual to
A $\frac{5}{9}(\tan \theta)^{\frac{-5}{9}}+c$
B $\quad-\frac{9}{5}(\tan \theta)^{\frac{-5}{9}}+c$
C $\frac{9}{5}(\tan \theta)^{\frac{-9}{5}}+c$
D $-\frac{5}{9}(\tan \theta)^{\frac{-9}{5}}+c$

$$
\begin{aligned}
& \frac{\sqrt{x^{2}+4 n+6}}{x^{2}+4 n+6+4-4} \\
= & \sqrt{(x+2)^{2}-(\sqrt{2})^{2}}
\end{aligned}
$$



Q4. The integral $\int\left(1+x^{x+\frac{1}{x}} x\right) e^{x+\frac{1}{x}}\left(x^{x}-\frac{x}{x}\right)$ is ectural $e^{2}$ to
A $(x-1) e^{x+\frac{1}{x}}+c \quad e^{x+\frac{1}{x}}+(x)\left(1-\frac{1}{x^{2}}\right) e^{x+}$
B $x e^{x+\frac{1}{x}}+c=\int e^{x+\frac{1}{x}}+x \cdot e^{x+\frac{1}{x}}-\iint\left(1-\frac{1}{x}\right) \cdot e^{x+\frac{1}{x}}$
C $(x+1) e^{x+\frac{1}{x}}+c$
D $-x e^{x+\frac{1}{x}}+c$



$\checkmark$
Q2. If $\int \frac{d x}{x^{3}\left(1+x^{6}\right)^{2 / 3}}=x f(x)\left(1+x^{6}\right)^{\frac{1}{3}}+c$ adhere C is a constant of integration, then the function $f(x)$ is equal to:

$$
\begin{aligned}
\frac{x^{6}+1}{} & =t \\
-6 x^{-7} d n & =d t \\
d x & =\frac{d t}{-6} \\
x^{7} & =\frac{d x}{}
\end{aligned}
$$

D


$$
\begin{gathered}
-\frac{1}{2}\left(\frac{1}{x}+1\right)^{-1}+c+c \\
\frac{x}{x}-\frac{1}{2} \frac{1}{x^{2}}\left(1+x^{x}+x^{6}+3+c\right.
\end{gathered}=
$$

$$
=\overline{x f}(x)\left(1+x^{6}\right)^{1 / 3}+
$$

$$
f(x)=\frac{1}{2 x^{3}}
$$

$$
\text { Q3. If } \overline{=}
$$

where $C$ is constant of integration, than $(A(x))^{\mathrm{m}}$ equal so m mm $\mathrm{f}_{r}$ on $n \mathrm{um}$

A $\frac{-1}{27 x^{9}}$
B $\frac{-1}{3 x^{3}}$
C $\frac{1}{27 x^{6}}$
D $\frac{1}{9 x^{1}}$

$0 \times x^{3}+1$


$$
\begin{aligned}
& -\quad=\int 2 x^{12}+5 x^{4} \\
& \frac{1}{2} \frac{1}{\left(1+\frac{1}{2}+\frac{1}{2} 5^{\prime}\right)}+\stackrel{\text { Q. The in }}{ } \\
& x^{15}\left(-1+\frac{1}{x^{2}}+\frac{1}{x}\right)^{3} \\
& x^{5} \quad=\frac{2 x^{-3}+5 x^{-6}}{\frac{1}{x^{2}}} d x \quad 1+\frac{1}{x^{2}}+\frac{1}{x^{5}}=t \\
& =\int-d t \quad\left(1+\frac{1}{x^{2}}+\frac{1}{x^{5}}\right)^{3} \quad 0-2 x^{3}-5 x^{-6} \\
& \text { B } \frac{x^{3}}{2\left(x^{3}+x^{3}+1\right)^{2}}+c \\
& \text { C } \frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+c \\
& t^{3}=-t_{-3 x}^{-3 x}=\frac{1}{2} t^{-2}+C \\
& \left(\frac{x^{5}+x^{3}+1}{x^{5}}\right)^{2} \\
& \text { D } \frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+c \\
& \text { Q2. The integral } \int \frac{-\sqrt{d x}}{x^{2}\left(x^{4}+1\right)^{8,4^{4}}} \text { equal: }
\end{aligned}
$$

A $\left(x^{4}+1\right)^{1 / 4}+c$
B $-\left(\frac{x^{4}+1}{x^{4}}\right)^{1 / 4}+c$
C $-\left(x^{4}+1\right)^{1 / 4}+c$
D $\left(\frac{x^{4}+1}{x^{4}}\right)^{1 / 4}+c$

$$
\int f(x) d x=F(x) f
$$

Definite integral

Ex. Find the integrals

$$
\begin{aligned}
& {\left[\frac{x^{2}}{2}\right]_{a}^{b}} \\
& =\frac{b^{2}}{2}-\frac{x^{2}}{2}
\end{aligned}
$$

4. $\int_{1}^{4}\left(x^{2}-x\right) d x$
5. $\int_{0}^{5}(x+1) d x$
6. $\int_{2}^{3} x^{2} d x$

7. $\int_{-1}^{1} e^{x} d x$
8. $\int_{0}^{4}\left(x+e^{2 x}\right) d x$

$$
4 \int_{1}^{4}\left(x^{2}-x\right) d x=\left[\frac{x^{3}}{2}-\frac{x^{2}}{2}\right]_{1}^{4}=\frac{(4)^{3}}{3}-\frac{(4)^{2}}{2}-\frac{1}{3}+\frac{1}{2}
$$

5). $\int_{-1}^{1} e^{x} d x=\left[e^{x}\right]_{-1}^{1}=e^{1}-e^{-1}$

$$
\begin{array}{ll}
\int_{1}^{2} x^{2} d x & {\left[\frac{x^{3}}{3}\right]_{1}^{2}=\frac{8}{3}-\frac{1}{3}=\frac{7}{3}} \\
\text { (a) } 1 \\
\text { (b) } \frac{7}{3} \\
\text { (c) } \frac{1}{3} \\
\text { (d) } 0 \\
\int_{0}^{2}\left(x^{2}+3\right) d x & \int_{0}^{2} x^{2}+3=\left[\frac{x^{3}}{3}+3 x\right]_{6}^{2}=\frac{8}{3}+ \\
\text { (a) } \frac{25}{3} \\
\text { (b) } \frac{26}{3}
\end{array}
$$

$$
\text { (c) } \frac{24}{3}
$$

(d) None of these

$$
\begin{aligned}
& f^{\prime}(n)=f(n) \text { Let } f(x) \text { be a function satisfying } f^{\prime}(x)=f(x) \text { with } f(0)=1 \text { and g be the function satisfying } f(x)+g(x)=x^{2} \text {. } \\
& \frac{f^{\prime}(x)}{f(x)}=\int_{1}^{1} \text { The value of the integral } \int_{0}^{1} f(x) g(x) d x \text { is } \\
& \begin{array}{ll}
f(x)=? & g(x)=x^{2}-f(x) \\
g(x)=? & g(x)=x^{2}-e^{x}
\end{array} \\
& \begin{array}{l}
f(x) \\
f(x)=x+C(A) e-\frac{1}{2} e^{2}-\frac{5}{2}
\end{array} \\
& \text { (B) } e-e^{2}-3 \\
& \text { (C) } \frac{1}{2}(\mathrm{e}-3) \\
& \begin{array}{ll}
f(x)=e^{x+c}=\quad & f(n)=e^{x+c} \\
& f(0)=1
\end{array} \\
& \stackrel{Q}{e}=1 \\
& \begin{array}{l}
1=e^{c} \\
c=0
\end{array} \\
& f(n)=e^{n} \\
& \int_{0}^{1} e^{x}\left(x^{2}-e^{x}\right) d x=\int_{0} x^{2} e^{x}-\int_{0}^{1} e^{x} \\
& \sum^{0}=1 \quad \begin{aligned}
\quad \int_{0}^{1} x^{2} \cdot e^{x}=\left[x^{2} \cdot e^{x}-2 x \cdot e^{x}+2 \cdot e^{x}\right]_{0}^{1} & =e-2 / e+2 / e-2 \\
& =e-2
\end{aligned} \\
& =e-2
\end{aligned}
$$

$$
\begin{aligned}
& 2^{0}=1 \\
& \int_{0}^{1} n^{2} \cdot e^{x}=\left[x^{2} \cdot e^{x}-2 x \cdot e^{x}+2 \cdot e^{n}\right]_{0}=e-2 \beta+2 / e-2 \\
& =e-2 \\
& \int_{0}^{1} e^{2 x}=\left[\frac{e^{2 x}}{2}\right]_{0}^{1}=\frac{e^{2}}{2}-\frac{1}{2} \\
& \operatorname{co}-\frac{e^{2}}{2}+\frac{1}{2}=e-\frac{e^{2}}{2} \frac{-3}{2} \\
& \frac{\pi}{2} \int_{0}^{1+\cos 2 x} \frac{12 \cdot \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x}{} \\
& \text { 13. } \int_{2}^{3} \frac{x d x}{x^{2}+1} \\
& \text { 14. } \int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x \\
& \text { 15. } \int_{0}^{1} x e^{x^{2}} d x \\
& \text { 16. } \int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} \\
& \text { 19. } \int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x \\
& \text { 20. } \int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x \\
& \text { 17. } \int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x \\
& \text { 18. } \int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x \\
& -\int_{0}^{\pi} \cos x \\
& \text { (h) - F ( a Some Properties of Definite Integrals } \\
& \int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \int_{a}^{b} \int_{b}^{a} \\
& \mathbf{P}_{1}: \quad \int_{-}^{\bar{b}} f(x) d x=-\int_{b}^{a} f(x) d x \text {. In partieutar, } \int_{a}^{a} f(x) d x=0 \\
& \int_{0}^{2 a} f(x) d n=\int_{0}^{a} f(x)+\int_{a}^{2 a} f(x) d x \\
& \text { Put } t=2 a-x, d t=-\underline{\partial u} \\
& \begin{array}{ll}
\mathbf{P}_{3}: J_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x & -\int_{a}^{0} f(2 a-t) d t=\int_{0}^{a} f(2 a-t) d t=\int_{0}^{a} f(2 a-x) d x
\end{array} \\
& \text { (Note that } \mathrm{P}_{4} \text { is a particular case of } \mathrm{P}_{3} \text { ) } \\
& \mathbf{P}_{5}: \quad \int_{0}^{2 a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(2 a-x) d x x^{2} \\
& =\int_{0}^{a} f(n)+\int_{0}^{a} f(2 a-n) d n \\
& \mathbf{P}_{6}: \quad \int_{0}^{2 a} f(x) d x=2 \int_{0}^{a} f(x) d x \text {, if } f(2 a-x)=f(x) \text { and } \\
& 0 \text { if } f(2 a-x)=-f(x) \\
& \mathbf{P}_{7}: \quad \text { (i) } \int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \text {, if } f \text { is an even function, i.e., if } f(-x)=f(x) \text {. } \\
& \text { (ii) } \int_{-a}^{a} f(x) d x=0 \text {, if } f \text { is an odd function, i.e., if } f(-x)=-f(x) \text {. } \\
& \text { 1. } \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \\
& \text { 2. } \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \text { 3. } \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} \\
& \sqrt{\cos x} \\
& \text { 4. } \int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x} \\
& \text { 5. } \int_{-5}^{5}|x+2| d x \\
& \text { 6. } \int_{2}^{8}|x-5| d x \\
& \rightarrow I=\frac{\pi}{2} \int_{0} \cos ^{2} n d n \\
& \underset{v_{1}-v_{e}}{I}=\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{\pi}{2}-x\right) d x=\int_{n}^{\frac{\pi}{2}} \sin ^{2} x d x \\
& 2 \pi=\int_{0}^{\frac{\pi}{2}} 1 d n=[n]_{0}^{\frac{\pi}{2}} \\
& \begin{array}{l}
2 \frac{\pi}{1}=\frac{\pi}{1}=\frac{\pi}{2}
\end{array}
\end{aligned}
$$

(P) Evaluate: $P_{4} / 4$
(Pu) Evatuate: $\int_{0}^{\pi / 4} \sqrt{1} \cos ^{3} \sin ^{2} \sin ^{2} x d x$

$$
\text { (b) } \sqrt[v]{ }+1
$$

$$
\text { (c) } \sqrt{2}
$$

(d) None of these

$$
\frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} f(\operatorname{cin}-\sin n)^{2}=\int_{0}^{\frac{\pi}{4}}(\sin -\operatorname{Sin} n) d x
$$

$\sin (A+r)$
$\sin (x) \cos 3+\cos x \sin B[\sin x+\cos n]_{0}^{\frac{\pi}{4}}=\left[\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-0-1\right]=\sqrt{2}-1$


$$
\begin{aligned}
& \text { (1-x) 7. } \int_{0}^{1} x(1-x)^{p^{2}} d x \quad \text { s. } \int_{0}^{\frac{\pi}{1} \log (1+\tan x) d x} \quad \text { ?. } \int_{0}^{2} x \sqrt{2-x} d x \\
& \text { 10. } \int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x \\
& \text { 11. } \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x \\
& I-\frac{\pi}{4} \int_{0} \lg (1+\tan x) \\
& I=\operatorname{Fip}_{0} \log \left(1+\tan \left(\frac{\pi}{4}-x\right)\right)=\frac{\pi}{4} \int_{0}^{\pi} \lg \left(1+\tan \frac{\pi}{4}-\tan x\right)
\end{aligned}
$$

$$
\begin{aligned}
& (\sin x) \cos 2 I==^{\frac{\pi}{a}} \int^{4} \lg 2-\log (1+\tan r) d x \\
& \begin{array}{c}
2 I=\int_{0}^{\frac{\pi}{A}} \log _{2}=\log 2 \cdot \frac{\pi}{4} \quad I I=\frac{\pi}{8} \cdot \log 2 \\
=0
\end{array} \\
& \text { 12. } \int_{0}^{\pi} \frac{x d x}{1+\sin x} \quad \underset{\text { 13. } \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x}{=} \xrightarrow{\text { 14. }} \underset{\int_{0}^{2 \pi \cos ^{5} x d x}}{\longrightarrow} \cos ^{4} x \cdot \operatorname{sen} n \\
& \text { 15. } \int_{0}^{\frac{\pi}{0}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x \text { 16. } \int_{0}^{\frac{2}{1}} \log (1+\cos x) d x \quad \text { 17. } \int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x \\
& \text { 18. } \int_{0}^{4}|x-1| d x
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) }-2 \\
& \text { (c) } w 2 \\
& =\frac{1}{\sqrt{2}}\left[\frac{\sin \frac{x}{2}}{1 / 2}-\cos x / 2\right]_{0}^{2 \pi} \\
& \text { (d) } 2 \sqrt{2}
\end{aligned}
$$

$\frac{2 \tan \theta}{1+\tan ^{2} \theta}=\frac{\sin (2 \theta)}{x=\tan a} \quad \frac{x}{d n=\sec ^{2} \theta d \theta}$

$$
\begin{aligned}
& x=\tan \theta \\
& \begin{array}{llll}
\theta=\tan ^{-1} n \\
\theta=\tan ^{-1}(0) & (a) & \frac{\pi}{2} & -1092
\end{array} \int_{0} \quad \sin ^{-1}(2 \tan \\
& \left.=2 \cdot \frac{\pi}{4} \cdot 1+2 \log _{\left(\frac{1}{\sqrt{2}}\right.}\right)-0-2 \lg (1)=\frac{\pi}{2}+2\left(\log _{2}(1)-\frac{1}{2} \ln 2\right) \\
& =\frac{\pi}{2}-l \operatorname{cog}^{2}
\end{aligned}
$$

$$
\sqrt{\frac{\sin x}{x}=F(x)}
$$

-Suppose that $F(x)$ is an antiderivative of $f(x)=\frac{\sin x}{x}, x>0$ then $\int_{1}^{\frac{3}{\sin 2 x}} \frac{x}{x} d x$ can be expressed asb $\int f(x) d x$

$\underbrace{a^{-x}}_{0} \int_{-a}^{a} f(x) d x=$
(B) $\int_{0}^{a}[f(x)-f(-x)] d x$
(C) $2 \int_{0}^{a} f(x) d x$
(D) Zero

$$
\int_{-a}^{a} 2^{x} d x=\frac{\int_{b}^{a} 2^{-}+2^{-x}}{}
$$

$\int_{0}^{\sqrt{\ln \left(\frac{\pi}{2}\right)}} \cos \left(\mathrm{e}^{\mathrm{x}^{2}}\right) \cdot 2 \mathrm{xe}^{\mathrm{x}^{2}} \mathrm{dx}$ is
$e^{(e)^{2}}$
The value of th


$$
t=e^{2 \mathrm{~B}))^{2}+(\sin 1)} \quad \overline{\mathrm{K}} \mathrm{z}(\mathrm{C}) 1-(\sin 1)
$$

(D) $(\sin 1)-1$


$$
\begin{aligned}
& -\left(\cos ^{-1}\left(4 x^{3}-3 x\right)+\sin ^{-1}\left(4 x^{3}-x\right) \frac{1}{2} \int_{\frac{1}{2}}^{2} \frac{-\pi}{2}\right. \\
& \left.\sin ^{-1}\left(3 x-4 x^{3}\right)-\cos ^{-1}\left(4 x^{3}-3 x\right)\right) d x \\
& \text { (C) } 7 \pi
\end{aligned}
$$

(B) $-\frac{\pi}{2}$
(C) $\frac{7 \pi}{2}$
(D) $\frac{\pi}{2}$

Q10. $\int_{0}^{\pi}[\cot x] d x,[\bullet]$ denajes the greatest integer function, is equal to $\quad[x]+[-x]$
A $\frac{\pi}{2}$
B 1

C -1
D $-\frac{\pi}{2}$



$\frac{2 a}{3} \xrightarrow[3]{ }\left\{f(0)+f\left(\frac{1}{2}\right)\right\}$
B $\frac{1}{3}\left\{f(1)+3 f\left(\frac{1}{2}\right)\right\}$
6

$$
\begin{aligned}
& a+b x+c x^{2} \text {, then } \int_{6}^{a+b x} f(x) d x \text { s equal to : } \\
& a+\frac{x^{2}}{a}=\frac{a}{2}+\frac{b}{2}+\frac{c}{3}
\end{aligned}
$$


(B) $\frac{1}{3}\left\{\overline{f(1)}+3 f\left(\frac{1}{2}\right)\right\}$
C $\frac{1}{6}\left\{\overline{f(0)}+\overline{f(1)}+4 f \overline{\left(\frac{1}{2}\right)}\right\}$

(D) $2:\left\{3 f(1)+2 f\left(\frac{1}{2}\right)\right\}\left\{\left(a+\frac{a+b}{2}+\frac{c}{4}\right)=\frac{a+\frac{b}{2}+\frac{c}{4}}{4}\right.$
 $2^{-n}=\left(\frac{1}{2^{n}}\right)$

(ax eras
A -2

$$
\begin{aligned}
& I= \\
& 9 T=\frac{3 \hbar}{4} \text { 而 }
\end{aligned}
$$

$$
\begin{aligned}
& 2 \sqrt{2}=\frac{\pi / 2}{4^{2}} \sin ^{2} n \\
& =\frac{1}{2}\left(\frac{5}{2}-6\right)=\frac{\pi}{4} \\
& I=
\end{aligned}
$$

$$
\begin{aligned}
& 2 I=\frac{3 \hbar}{\frac{n \pi}{4}} \int_{-1}^{1} 1 \operatorname{lesin}^{\prime}+1^{\frac{n}{4}} \\
& \frac{\frac{\pi}{x}}{\frac{\pi}{x}} \frac{1-\cos n+1+\cos \pi}{1-\cos ^{2} n}=\frac{x}{-1-\operatorname{con}} \\
& J=\mu \delta=2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
4 \int_{2} \lg \left(\left(6-x^{2}\right)+\ln \left(36 x^{2}-12 x\right)\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2 L=\int_{\mathrm{D}}^{6}{ }_{2}^{6} \int^{4} \operatorname{ly}\left(x^{2}-12 x+36\right) \\
& 2 L=\int_{2} \frac{D}{D} \quad 2 \\
& =\left[x \int_{-2}^{4}\right. \\
& 1=2 \log \left(x^{2}-12 x+36\right)+\lg \left(x^{2}\right) \\
& 2 \Sigma=\int_{2}^{4} \frac{\lg x^{2}+\lg \left(x^{2}-12 x+36\right)}{\lg x^{2}+\lg \left(x^{2}-12 x+36\right)} \\
& 2 \frac{1}{2}=-2
\end{aligned}
$$

Q7. The value of the integral, $\int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x}+\sqrt{x}} d x$ is
A $1 / 2$
B $3 / 2$
C 2
D 1
Q10. The value of $\int_{-\pi}^{\pi} \int_{\frac{\cos ^{2} x}{1+a^{x}} d x} \int_{-a>\frac{\pi}{2}}^{\frac{\hbar}{2}} \frac{S_{m^{2} n}^{1+2^{2}}}{}$

A $\pi$
B $a \pi$
C $\frac{\pi}{2}$
D $2 \pi$

$$
\left.\alpha_{1 / c} \cdot e^{x}+e^{3} \cdot e^{-x}\right)^{-1} d x
$$

The value of the definite integral, $\int_{1}^{\infty}\left(e^{x+1}+e^{3-x}\right)^{-1} d x$ is

$$
\begin{aligned}
& =\frac{1}{e} \int_{e}^{\infty} \frac{d t}{t^{2}+e^{2}} \\
& =\frac{1}{e} \frac{1}{e}\left[\tan ^{-1}\left(\frac{t}{e}\right)\right]^{\infty} \\
& =\frac{1}{e^{2}}\left[\frac{\pi}{2}-\frac{\hbar}{4}\right]^{e} \frac{\frac{\pi}{\Delta e^{2}}}{}
\end{aligned}
$$

If $f(x)=e^{g(x)}$ and $g(x)=\int_{2}^{x} \frac{t d t}{1+t^{4}}$ then $f^{\prime}(2)$ has the value equal to :
(A) $2 / 17$
(B) 0
(C) 1
(D) cannot be determined
(1) $\frac{d}{d x}\left(\int_{(2(x)} f(x)\right)=f(x)^{\wedge}$
(2) $\frac{d}{d x}\left(\int_{h(x)} f(t) d t\right)=f(\hat{g}(x)) \cdot\left(\frac{d}{d x}(u)-f(h(u)) \cdot \frac{d}{d x}(h(x)\right.$

$$
\begin{aligned}
& \int_{a}^{a}=0 \\
& \\
& \\
& \\
& f^{\prime}(2)=e^{2} e^{2} \frac{d t}{1 x^{4}} \cdot \frac{2}{1+x^{4}} \cdot 1=e^{0} \cdot \frac{2}{17}=\frac{2}{17}
\end{aligned}
$$

If $x$ satisfies the equation $\left(\int_{0}^{1} \frac{d t}{t^{2}+2 t \cos \alpha+1}\right) x^{2}-\left(\int_{-3}^{3} \frac{t^{2} \sin 2 t}{t^{2}+1} d t\right) x-2=0(0<\alpha<\pi)$, then the
value x is
(A) $\pm \sqrt{\frac{\alpha}{2 \sin \alpha}}$
(B) $\pm \sqrt{\frac{2 \sin \alpha}{\alpha}}$
(C) $\pm \sqrt{\frac{\alpha}{\sin \alpha}}$
(D) $\pm 2 \sqrt{\frac{\sin \alpha}{\alpha}}$


Let $I_{1}=\int_{0}^{\pi / 2} \frac{\sin x-\cos x}{1+\sin x \cdot \cos x} d x ; I_{2}=\int_{0}^{2 \pi}\left(\cos ^{6} x\right) d x ; I_{3}=\int_{-\pi / 2}^{\pi / 2}\left(\sin ^{3} x\right) d x \quad \& \quad I_{4}=\int_{0}^{1} \ln \left(\frac{1}{x}-1\right) d x$ then $\begin{array}{ll}\text { (A) } I_{1}=I_{2}=I_{3}=I_{4}=O & \text { (B) } I_{1}=I_{2}=I_{3}=O \text { but } I_{4} \neq O \\ \text { (C) } I_{1}=I_{3}=I_{4}=O \text { but } I_{2} \neq 0 & \text { (D) } I_{1}\end{array}$ (C) $I_{1}=I_{3}=I_{4}=O$ but $I_{2} \neq O \quad$ (D) $I_{1}=I_{2}=I_{4}=O$ but $I_{3} \neq 0$
$\int \frac{1-x^{7}}{x\left(1+x^{7}\right)} d x$ equals :
(A) $\ln x+\frac{2}{7} \ln \left(1+x^{7}\right)+c$
(B) $\ln x-\frac{2}{7} \ln \left(1-x^{7}\right)+c$
(C) $\ln x-\frac{2}{7} \ln \left(1+x^{7}\right)+c$
(D) $\ln \mathrm{x}+\frac{2}{7} \ln \left(1-\mathrm{x}^{7}\right)+\mathrm{c}$

The value of the integral $\int_{-\pi}^{\pi}(\cos p x-\sin q x)^{2} d x$ where p , q are integers, is equal to:
(A) $-\pi$
(B) 0
(C) $\pi$
(D) $2 \pi$

